
Series I, exercise 1 Prove that there does not exist an arithmetical sequence such that

its three consecutive terms are also di�erent terms of the sequence (2n).

Solution Suppose 2k, 2l, 2m form an arithmetic progression, where 0 < k < l < m. Then

2l − 2k = 2m − 2l, and therefore 2l+1 = 2k(2m−k + 1). Because of k < l < m, we have

m ≥ k + 2, and so 2m−k + 1 is an odd number greater than or equal to 5. This odd number

must divide 2l+1. This is a contradiction.
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Series I, exercise 2What is the greatest and the smallest number (not starting from 0),

consisting of all digits from 0 to 9 (where every digit appears exactly once) and is divisible

by 11?

Solution The number is divisible by 11 if and only if the di�erence between the sum of

digits on odd places and the sum of digits on even places is divisible by 11. First, we look

for the greatest number x consisting of all digits which is divisible by 11. Denote by a the

sum of digits on odd places of x and by b the sum of digits on even places of x. Observe that

the sum of all digits we want to use is 45. Hence the number a− b = (a+ b)− 2b = 45− 2b

must be odd. Since a, b ≥ 0 + 1 + 2 + 3 + 4 = 10 and a, b ≤ 9 + 8 + 7 + 6 + 5 = 35, we have

|a − b) ≤ 25. Therefore, a − b = 11 or a − b = −11. Since also a + b = 45, we have a = 28,

b = 17 or a = 17, b = 28. Let A be the set of digits on odd places and B be the set of digits

on even places of x. In x there are digits from A and B in turns and the digits from both sets

should be taken in decreasing order. The optimal set A would consist of 9, 7, 5, 3, 1. Then

x = 9876543210. But 9 + 7 + 5 + 3 + 1 = 25 and should be equal to 28. We would like to

modify A by changing the smaller numbers (then we change the last digits of the number).

Hence we replace 1 in A by 4. Finally, x = 9876524130.

First, we look for the smallest number y consisting of all digits which is divisible by 11.

Let a, b, A,B be as above. Since we need to start from 1, 0 should be in B. Moreover a should

be equal to 17 (as we want the smallest number). We have 1 + 2 + 3 + 4 + 5 = 15, so we

need to make it greater by 2. We would like to change the smaller numbers to have them in

B. But we can only change 4 to 6. So, y = 1024375869.
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Series I, exercise 3 Let M ⊂ N be a set such that for any n,m ∈M

n > m⇒ n−m ≥ nm

25
. (1)

What is the maximal number of elements of the set M?

Solution

First, observe that if n,m ≥ 25, then we have n−m < n ≤ nm
25
, so the desired inequality

is not satis�ed. Hence there can be only one n ∈ M which is greater than 24. We will

construct the maximal set M = {n1, n2, . . . , nk} for some k ∈ N, where ni < ni+1 for all

i < k, satisfying condition (1). To maximize the number of elements of the set M , we should

take ni as small as possible. In particular, take n1 = 1.

For i < k, let di := ni+1 − ni. By (1),

di ≥
nini+1

25
=
ni(ni + di)

25
,

which is equivalent to

(25− ni)di ≥ n2
i ,

and thus to

di ≥
n2
i

25− ni

,

because ni < 25. We have d1 ≥ 1
24
∈ (0, 1), so we can take n2 = n1 + 1 = 2. Similarly,

d2 ≥
4

23
∈ (0, 1), so n3 = n2 + 1 = 3,

d3 ≥
9

22
∈ (0, 1), so n4 = n3 + 1 = 4,

d4 ≥
16

21
∈ (0, 1), so n5 = n4 + 1 = 5,

d5 ≥
25

20
∈ (1, 2), so n6 = n5 + 2 = 7,

d6 ≥
49

18
∈ (2, 3), so n7 = n6 + 3 = 10,

d7 ≥
100

15
∈ (6, 7), so n8 = n7 + 7 = 17,

d8 ≥
289

8
∈ (36, 37) so n9 = n8 + 37 = 54.

As there cannot be two numbers in M greater than 25, we cannot add any more numbers.

Now, it su�ces to check that such de�ned M satis�es (1). Let g : (0,∞) × (0,∞) → R be

given by the formula g(n,m) = n−m− nm
25
. We want to show that for all n,m ∈M , n > m,
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we have g(n,m) > 0. Let n ∈ M . Since g is decreasing with respect to m, to show that

g(n,m) > 0 for all m < n, it su�ces to show that g(n,m) > 0 for the greatest m ∈M such

that m < n. However, this means that we only need to check if g(ni, ni+1) > 0 for i < 9, but

this has been already proved. Hence M satis�es (1) and has maximal number of elements,

which is 9.
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Series I, exercise 4 For n ∈ N solve the following equation in integers:(
2− 1

x1

)(
2− 1

x2

)
. . .

(
2− 1

xn

)
= 3.

Solution Case n = 1

2− 1

x1
= 3

x1 = −1.

Case n = 2

(
2− 1

x1

)(
2− 1

x2

)
= 3.

Equivalently we have

x1x2 − 2x2 − 2x1 + 4 = 3,

and so

x2(x1 − 2)− 2(x1 − 2) = 3,

(x1 − 2)(x2 − 2) = 3.

The only solutions in integers are: (−1, 1), (1,−1), (3, 5), (5, 3).

Case n ≥ 3. If xk 6= 1, then 2 − 1
xk
≥ 3

2
. By s denote number of elements xk which are

not equal to 1. We have(
2− 1

x1

)(
2− 1

x2

)
· . . . ·

(
2− 1

xn

)
≥
(
3

2

)s

· 1n−s

Therefore,

3 ≥
(
3

2

)s

It implies s ≤ 2. By case n = 2, we obtain that solutions are of the form

(x1, x2, . . . , xn) = (1, 1, . . . , a, b)

where (a, b) ∈ {(−1, 1), (1,−1), (3, 5), (5, 3)} and all permutations.)
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Series I, exercise 5 Fix n ∈ N \ {1}. Two players play the following game. Starting

from k = 2, each player has two possible moves: he can replace k by k + 1 or by 2k. The

player who is forced to choose a number greater than n loses. For each n which player (the

�rst one or the second one) has a winning strategy, that is, a strategy which use will ensure

the win no matter what the other player will do?

Solution

First, observe that if n is odd, then the �rst player has a winning strategy: he just has

to add 1 in all of his turns. After each of his turns k will be odd. Indeed, after the �rst turn

we have k = 3, so an odd number. Moreover, if k is odd, then k+1 and 2k are even, so after

the second player's turn k is even. And then k + 1 will be odd, so it cannot be greater than

n if k is not greater than n. So, the �rst player will win.

If n = 2, then the second player obviously wins. If n = 4 or n = 6, then the �rst player

should choose k = 4 in his �rst turn. Then the second player is forced to choose k = 5 (and

loses if n = 4). If n = 6, then the �rst player take k = 6 and wins.

We will now show that if some player X has a winning strategy for some n, then he also

has a winning strategy for 4n and 4n+ 2. Indeed, using strategy for n, the player X is sure

that the other player will be �rst to choose a number k greater than n. Then, the player X

chooses 2k and this number is greater than 2n+ 1. So, now the second player will lose if he

multiplies k by 2, so he has to add one. Player X do the same, and so he always choose even

numbers, so he will win, because he eventually will reach 4n or 4n+ 2.

Finally, we have that if the �rst player has a winning strategy for n, then he also has for

4n, 4n + 1, 4n + 2, 4n + 3. So, the only case when the second player wins is if n = 2 or if

n = 4p or n = 4p + 2 for some p for which we know that the second player has a winning

strategy (that is, the second player wins for 2, 4 ·2 = 8, 4 ·2+2 = 10, 4 ·8 = 32, 4 ·8+2 = 34,

and so on).
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Series II, exercise 1 Let A be a smallest set of natural number such that

(1) 2 ∈ A;

(2) n2 ∈ A⇒ n ∈ A

(3) n ∈ A⇒ n+ 5 ∈ A.

Which numbers belong to A, and which do not?

Solution From (1) and (3) we immediately get that A ⊂ B, where B := {5k+2: k ∈ N}.

We will show that A = B. Of course, B satis�es (1) and (3). We will show that it also satis�es

(2). All elements of B are equal to 2 mod 5. We will show that there is n ∈ N such that

n2 =mod 5 2. We will consider all 5 possible cases:

n =mod 5 0⇒ n2 =mod 5 0,

n =mod 5 1⇒ n2 =mod 5 1,

n =mod 5 2⇒ n2 =mod 5 4,

n =mod 5 3⇒ n2 =mod 5 4,

n =mod 5 4⇒ n2 =mod 5 1,

so n2 6=mod 5 2 for any n ∈ N and so (2) is satis�ed for B (as the �rst part of the implication

is always false).
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Series II, exercise 2 On the table there are n glasses which are put upside down. Is

it possible to obtain, after some number of moves, a setting in which all glasses are put

in upright position if in every move we turn exactly m glasses (m < n)? If the answer is

positive, what is the minimal number of moves to do that? Give the answer depending on n

and m.

Solution First, observe that if m = n, then one move su�ces to turn all glasses. Hence

we assume that m < n. For k ≤ n we will denote by (k) a state in which we have exactly k

glasses in upright position. So, we start from the state (0), and we want get to the state (n).

Suppose that we have a state (k). We will examine what are possible states after the

next move. If k −m ≥ 0 and k +m ≤ n, then after the next move we can maximally turn

m upside down glasses, receiving the state (k +m). If we turn m − 1 upside down glasses

and one upright glass, we will obtain the state (k + m − 1 − 1) = (k + m − 2). Further,

if we turn exactly j upside down glasses and m − j upright glasses (for j ∈ {0, . . . ,m}),

then we receive a state (k + j − m + j) = (k + m − 2j). So, the only possible states are:

(k−m), (k−m+2), . . . , (k+m−2), (k+m). If k+m > n, then we can maximally turn n−k

upside down glasses, so the highest possible state is (k+n−k−(m−(n−k))) = (2n−m−k).

Similarly, if k−m < 0, then we can maximally turn k upright glasses, so the lowest possible

state which we can obtain is (k + (m− k)− k) = (m− k).

Observe that if m and k has the same even parity, then in the next move we can obtain

only even number of upright glasses, and otherwise we can only have odd number of upright

glasses. After the �rst move we will always be in the state (m), and the penultimate state

must be (n−m). So, there are two important factors which has an impact on the solution:

the even parity of n and m and whether m+m ≤ n. So, let us consider the following cases.

1. m,n- even, 2m > n. Then n−m is even and n−m ≤ 2n−m−m = 2n−2m, therefore

from the state (m) we can get to the state (n−m) in one move. Hence the optimal way from

(0) to (n) is following:

(0)→ (m)→ (n−m)→ (n).

Thus, we need exactly 3 moves.

2. m,n- even, 2m ≤ n. Let k, r ∈ N, r < m be such that n = mk+ r. Suppose that r > 0.

Then r is even. So it is possible to get from (m) to (m+ r) in one move. Hence the optimal

way from (0) to (n) is following:

(0)→ (m)→ (m+ r)→ (2m+ r)→ · · · → (km+ r) = (n).
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We need k + 1 = d n
m
e moves, where dxe = min{y ∈ Z : y ≥ x}. If r = 0, then it su�ces to

make k = n
m
moves. Generally, we need d n

m
e moves.

3. n-even, m-odd, 2m > n. Then n−m is odd, so we can get the state (n−m) only after

odd number of moves. Observe that from the state (m) we can get to states: (0), (2), . . . (2n−

m − m) = (2n − 2m). From each we can return to (m), however we would like to get to

(n − m), but n − m < m. The lowest state we can get from the state (k) is (m − k), so

the larger k, the more possible states we can get in the following move. Hence in the second

step we should get from (m) to the state (2n− 2m). If n−m ≥ m− (2n− 2m) = 3m− 2n,

then we can get from (2n− 2m) to (n−m). If not, then in the next even move (fourth) we

should choose the greatest possible state. And the possible maximum (that is, 2n−m− k)

is the largest for the smallest k. So from the state (2n − 2m) we should go to the lowest

possible state, that is, (3m− 2n). Then we again choose the maximal possible state, that is,

(2n−m− 3m + 2n) = (4n− 4m). If n−m ≥ m− (4n− 4m) = 5m− 4n, then we can get

from (4n− 4m) to (n−m). If not then we continue the process described above.

We will inductively prove that, until the end of the process, after step 2k we will have a

state (2kn−2km), and in the move 2k+1 we will get to state ((2k+1)m−2kn). Assume that

after step 2k we have a state (2kn − 2km). In the next state we choose the lowest possible

state, that is, (m − (2kn − 2km)) = ((2k + 1)m − 2kn). In the step 2k + 2 we choose the

largest possible state, that is, (2n− ((2k + 1)m− 2kn)−m) = ((2k + 2)n− (2k + 2)m). By

induction, we have the assertion.

We will now show that this process will �nish after �nite number of steps. It su�ces to

notice that (2k+3)m−(2k+2)n < (2k+1)m−2kn, so the states obtained in the odd steps are

smaller and smaller. Hence we continue the process until k such that (2k+1)m−2kn ≤ n−m.

Let k, r ∈ N, r < n−m be such that

2k(n−m) + r = n.

Suppose that r > 0. Then r = n − 2k(n − m) = 2km − (2k − 1)n < n − m. Therefore,

(2k + 1)m − 2kn < 2km − (2k − 1)n < n − m, (because n > m), but in the same time

(2k − 1)m− (2k − 2)n = 2km− (2k − 1)n+ n−m ≥ n−m. So, the optimal path from (0)

to (n) is following:

(0)→ (m)→ (2n− 2m)→ (3m− 2n)→ (4n− 4m)

→ (5m− 4n)→ · · · → (2kn− 2km)→ (n−m)→ (n).
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The necessary number of steps is 2k + 2 = 2 · d n
2(n−m)

e. If r = 0, then the optimal path is:

(0)→ (m)→ (2n−2m)→ (3m−2n)→ (4n−4m)→ (5m−4n)→ · · · → (2kn−2km) = (n).

We need 2k = 2 · n
2(n−m)

moves. Finally, it is necessary to make 2 · d n
2(n−m)

e moves.

4. n-even, m-odd, 2m ≤ n. Then we act as in case 2., considering 2m instead of m. Let

k, r ∈ N, r < 2m be such that n = 2mk + r. Suppose that r > 0. Then r is even, so we can

get from (r) to (m). Hence the optimal path is:

(0)→ (m)→ (r)→ (m+ r)→ (2m+ r)→ . . . (2mk + r) = (n).

We need 2k + 2 = 2 · d n
2m
e moves. If r = 0, the optimal path is:

(0)→ (m)→ (2m)→ . . . (2mk) = (n).

We need 2k = 2 · n
2m

steps. Finally, we have to make 2 · d n
2m
e moves.

5. n- odd, m - even. Since m is even, then we can only obtain even states, so there is no

way to get from (0) to (n).

6. n,m -odd, 2m > n. Then n−m is even and n−m < 2n−m−m = 2n− 2m, so we

can obtain a state (n−m) after one move from (m). So, the optimal way is:

(0)→ (m)→ (n−m)→ (n).

The required number of steps is 3.

7. n,m -odd, 2m ≤ n. Let k, r ∈ N, r < m be such that n = mk + r. Then either r is

even or r +m is even, so one of these states can be obtained directly from (m). If r +m is

even, then the optimal path from (0) to (m) is following:

(0)→ (m)→ (m+ r)→ (2m+ r)→ · · · → (km+ r) = (n).

We need k + 1 moves. If r is even and r > 0, then the possible path is:

(0)→ (m)→ (r)→ (m+ r)→ · · · → (km+ r) = (n).

It needs k + 2 moves. However, we would need to get back from (m) do (r). But (m+ r) is

odd, so we could not obtain this state directly from (m). If we would get to (2m), then in

the next step we could only get to odd states. So, it would be impossible to get to (2m+ r),
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however we could get back to (m+ r). But this would not let us eventually get to (n) after

less number of steps. So, the suggested path is optimal. If r = 0, then the optimal path is:

(0)→ (m)→ (2m)→ · · · → (km) = (n).

We need then k steps. Finally, we have to make n
m

steps if n
m
∈ N. If n

m
/∈ N, then we need

d n
m
e moves if d n

m
e is odd, and d n

m
e+ 1 moves if d n

m
e is even.
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Series II, exercise 3 There is some number of equilateral triangles on the plane. To-

gether they cover a surface of area equal to 1. Show that it is possible to choose from these

triangles some number of disjoint triangles such that the sum of their areas is not less than

1
16
.

Solution Let us calculate the area of ε-neighbourhood of an equilateral triangle with

side a. This neighbourhood consists of the triangle itself of area
√
3
4
a2, three rectangles of

area εa each and three parts of a disk that together give a whole area or a disk with radius

ε. Thus, this area sums to
√
3
4
a2 + 3εa+ πε2.

Let us choose the biggest triangle and denote it's side by a1. If its area is ≥ 1
16
we are done.

Assume to the contrary that a21 <
1

4
√
3
. All the triangles that have a nonempty intersection

with this one lie in it's a1-neighbourhood whose area is (
√
3
4
+ 3 + π)a21 and thus is smaller

than (
√
3
4
+3+π) 1

4
√
3
< 1. Because of that there have to exist triangles that are disjoint with

the chosen triangle. Let a2 be a side of such a triangle. If sum of areas of �rst two triangles is

greater than 1
16

we are done. If not, we repeat the previous argument for a2. Thus, at every

step we �nd triangles which are pairwise disjoint and whose sum of areas is ≥ 16 or we �nd

a triangle that is disjoint from all the others. Because the number of triangles is �nite the

proof is complete.
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Series II, exercise 4 Is there an injective function f : R → R such that for all x ∈ R

the following inequality is satis�ed

f(x2)− (f(x))2 ≥ 1

4
?

Solution Firstly, observe that for x = 0 and x = 1 we obtain

f(0)− f 2(0) ≥ 1

4

f(1)− f 2(1) ≥ 1

4

Inequality t2 − t + 1
4
≤ 0 has only one solution t = 1

2
. It means f(0) = f(1) = 1

2
. It

contradicts the injectivity of the function f . Therefore, there does not exist such a function.
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Series II, exercise 5 Let k and n be natural numbers satisfying

kn
k

= nkn .

Prove that k = n.

Solution Let k, n ∈ N be such that kn
k
= nkn . We have k = 1 if and only if n = 1.

If k = 2, then n > 1. If n > 2, then

2n
2

= n2n > 22
n

.

So, n2 > 2n. However, for n ≥ 4 we obviously have 2n ≥ n2. So, since n2 > 2n, we must

have n < 4. For n = 3 we would have an equality 23
2
= 32

3
which is false. Therefore, n = 2.

Similarly, if n = 2, then k = 2.

Suppose that n, k ≥ 3 and n 6= k. Without loss of generality we can assume that n < k.

Consider a function f : (0,+∞)→ R given by the formula f(x) = lnx
x
. Then f ′(x) = 1−lnx

x2 .

We have f ′(x) < 0 for x > e, so the function f is decreasing on the interval (e,+∞). Hence

lnn

n
>

ln k

k
,

and so

k lnn > n ln k

lnnk > ln kn

nk > kn.

In the consequence,

kn
k

> nnk

> nkn ,

a contradiction. Thus, n = k.
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Series III, exercise 1 We have a deck consisting of 2n cards. After a shu�ing the order

of cards changes from a1, a2, . . . , an, b1, b2, . . . , bn to a1, b1, a2, b2, . . . , an, bn. For what n cards

will return to the initial order after shu�ing them 8 times?

Solution

First, observe that the �rst and the last card never changes their place. Let us enumerate

the positions of the card starting from 0 and �nishing at 2n−1 (the card a1 is on the position

0, a2 on the position 1 and so on, and bn is on the position 2n− 1). Shu�ing the cards once

moves the card from position i to the position 2i if i < n, and to the position 2i− (2n− 1)

if i ≥ n. We can ignore the card bn as it does not change its position. Then we can see that

generally the card from the position i moves to the position 2imod (2n−1). So, after shu�ing

the deck 8 times, the card from the position i moves to the position 256imod (2n − 1). So,

the deck gets back to the initial state if and only if 256i =mod 2n−1 i for all i < 2n− 1. This

is equivalent to the equality 256 =mod 2n−1 1, which holds if and only if (2n − 1)|255. The

divisors of 255 are: 1, 3, 5, 15, 17, 51, 85, 255, so the possible n are: 1, 2, 3, 8, 17, 26, 43, 128.
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Series III, exercise 2 Does there exist an in�nite increasing sequence of prime numbers

(qn) such that for all n ∈ N

qn+1 ≥
qn + qn+2

2
?

Solution Let us imagine that (qn) is a sequence where for each n qn is prime. Then

qn+1 ≥
qn + qn+2

2

2qn+1 ≥ qn + qn+2

qn+1 − qn ≥ qn+2 − qn+1.

(2)

Let's de�ne the sequence of di�erences di as di+1 = qi+1 − qi. Note that ∀i di ∈ Z and

1 < di ≤ di−1. Obviously (dn) must become constant as a nonincreasing sequence of positive

integers. Let us denote by z the limit of this sequence. Let us analize the remaiders modulo

z − 1 of the numbers in the sequence (qn). For n big enough (such that qn+1 − qn = z) we

have qn ≡ a mod (z − 1), qn+1 = qn + z ≡ a+ 1 mod (z − 1) and so on. As the remainders

increase at some point we obtain qm ≡ 0 mod (z−1) and so qm is not prime, a contradiciton.

This ends the proof.
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Series III, exercise 3 For x > 0 let

g(x) = lim
r→0

(
(x+ 1)r+1 − xr+1

) 1
r .

Calculate lim
x→∞

g(x)
x
.

Solution

First, observe that for r > −1 and any positive x, we have (x+ 1)r+1 − xr+1 > 0. Thus,

by the continuity of the logarithm,

ln g(x) = lim
r→0

ln((x+ 1)r+1 − xr+1)1/r = lim
r→0

1

r
ln((x+ 1)r+1 − xr+1)

By L'Hôpital's rule, we obtain

ln g(x) = lim
r→0

(x+ 1)r+1 ln(x+ 1)− xr+1 lnx

(x+ 1)r+1 − xr+1

=
(x+ 1) ln(x+ 1)− x lnx

(x+ 1)− x
= ln((x+ 1)x+1x−x)

Hence

g(x) = (x+ 1)x+1x−x = (x+ 1)

(
1 +

1

x

)x

Therefore,

lim
x→∞

g(x)

x
= lim

x→∞

x+ 1

x

(
1 +

1

x

)x

= 1 · e = e.
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Series III, exercise 4 There are n identical balls on the table. We colour them in such

a way that balls which are contacting have di�erent colors. What is the smallest number of

balls n such that there exists a setting of n balls in which it is necessary to use at least 4

colors to colour balls?

Solution

First, we will prove that in the setting on the picture above, which uses 11 balls, we need at

least 4 colors to colour balls. Suppose that we can color them using 3 colors A, B, C. We use

color A for colouring ball 11. Then we use colors B, C to colour balls 8 and 4, respectively.

Then ball 7 must have color A. Then ball 3 has color B and 1 has color A. Analogously, we

show that ball 2 has to have color A (it does not matter whether ball 10 will have color B

or C). Therefore, 1 and 2 has the same color, a contradiction.

If there was another setting with less than 11 balls, in which we need to use four colors,

then in this setting there are 2 contacting balls which would have to have the same color if we

would like to use 3 colors in that setting (like balls 1 and 2 on the picture). Since these balls

must have the same color, there must be at least 2 balls contacting each of them. Thus, we

have balls 1-6 like on the picture, but angles of their setting may be di�erent. In particular,

balls 4 and 5 could be contacting. However, in every setting of 6 balls like that we can use 3

colors. Thus, we need to add another balls (7, 9) in such a way that pairs of balls 3, 4 and

5, 6 has to be coloured using the same two colors. Still, we can use 3 colors, so we need to

make sure that balls 7 and 9 has the same color, so we add 2 balls: one contacting 7 and

4, and one contacting 5 and 9 (that is, balls 8 and 10). However, even if balls 8 and 10 are

contacting, we can easily use only 3 colors. Hence, we cannot use less than 11 balls.
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Series III, exercise 5 Let A = (aij) be a real matrix fo dimensions m×n with at least

one non-zero element. For i ∈ 1, 2, . . . ,m let Wi =
∑n

j=1 aij be a sum of terms from i-th row

of the matrix, and for j ∈ 1, 2, . . . , n let Ki =
∑m

i=1 aij be a sum of terms from j-th column

of the matrix A. Prove that there exist k ∈ {1, . . . ,m} and l ∈ {1, . . . , n} such that

(akl > 0) ∧ (Wk ≥ 0) ∧ (Kl ≥ 0)

or

(akl < 0) ∧ (Wk ≤ 0) ∧ (Kl ≤ 0).

Solution

Denote

I+ := {i ≤ m : Wi ≥ 0},

I− := {i ≤ m : Wi < 0},

J+ := {j ≤ n : Ki > 0},

J− := {j ≤ n : Ki ≤ 0}.

Suppose that the assertion is false. Then, for (i, j) ∈ I+ × J+ we must have aij ≤ 0 and

for (i, j) ∈ I− × J− we must have aij ≥ 0. We have

∑
(i,j)∈I−×J+

aij =
∑
i∈I−

(
n∑

j=1

aij −
∑
j∈J−

aij) =
∑
i∈I−1

Wi −
∑

(i,j)∈I−×J−

aij ≤ 0.

On the other hand,

∑
(i,j)∈I−×J+

aij =
∑
j∈J+

(
m∑
i=1

aij −
∑
i∈I+

aij) =
∑
i∈J+

Kj −
∑

(i,j)∈I+×J+

aij ≥ 0.

So,
∑

(i,j)∈I−×J+ aij = 0, and hence, by the calculations above,
∑

i∈I−1Wi =
∑

i∈J+ KJ = 0.

Therefore, I− = J+ = ∅. So, Wi ≥ 0 for all i ≤ m and Kj ≤ 0 for all j ≤ n. Thus,

0 ≤
m∑
i=1

Wi =
n∑

j=1

Kj ≤ 0,

and so Wi = 0 for all i ≤ m and Kj = 0 for all j ≤ n. Since there are k ≤ m, l ≤ n such that

akl 6= 0 and Wk = Kl = 0, we obtain a contradiction with the assumption that the assertion

does not hold, which �nishes the proof.
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